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Least-Squares Fitting



Approximation

Common Situation:

= Many data points
= Noisy data
= Measurements, 3D scans, ...

= Approximate with simple curve / surface

What we need:
= What is a good approximation?
= How to compute?



Approximation Techniques

Agenda:
= | east-squares approximation

= [teratively reweighted least-squares

= Total least-squares linear approximation



L east-Squares

Scenario for now:

= Function values y; at positions x; (1D — 1D)
= Independent variables x; known exactly.
= Dependent variables y. with some error.

= Error Gaussian, i.i.d.— .
- i.i.d. = “independent,
= normal distributed indentically

= independent distributed”’
= same distribution at every point

= Class of functions (basis) known



Situation

Y2 ”f

X;X; X,

Situation:
= Sample points taken at x, from original f.
= Unknown Gaussian i.i.d. noise added to each y..
= Reconstruct f.



summary

Statistical model: least-squares criterion
' F(x) =y i
argfmln;(f b y)

Linear ansatz: quadratic objective
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Maximum Likelihood Estimation

Goal:

= Maximize probability of f
- Probability that measured data originated from f

= “Maximum likelihood estimation”



Error Model

N, () Gaussian
| | normal
distribution
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Assumption

= Error normal distributed
= Independent for each data point

= (Gaussian noise: maximum entropy for given variance
= Unstructured noise



Maximum Likelihood Estimation
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Maximum Likelihood Estimation
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L east-Squares Approximation

We have shown

= Maximum likelihood estimate minimizes
sum of squared errors

Next: Compute optimal coefficients
k
= Linear ansatz: f(x) = EAjbj(x)
=1

= Determine optimal 4,



Maximum Likelihood Estimation

Notation
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation
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— quadratic optimization problem



Critical Point
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Gradient




Critical Point

() eo-(i)
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Summary (again)

Statistical model: least-squares criterion
' F(x) =y i
argfmln;(f b y)

Linear ansatz: quadratic objective
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Variants

Weighted least squares:

= Varying noise level
= Varying standard deviations o;

= Weighted least squares problem
= Noisier points have smaller influence



Same procedure as prev. slides...
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Result

Linear system for the general case:

( n
(b;,by) -+ (by, b))\ /A4 (y,bq) <bi’bj> = z b (x¢) - bj(x;) - w?(x¢)
: : N E with 4 =1

(bkr b1> (bk’ bk) Ak <y’ bk) (Y; bl> = z Yt * bi(xt) ) wz(xt)
t=1

\

1
w?(xe) = — ., l.e. w(x;) =—

Larger w — larger influence of data point



Least-Squares Linear Systems

Least-squares solution to general linear system
= Consider
Ax=Db
= Least-squares formulation
arg min(Ax — b)?

x € R4

= arg min(xTATAx — 2bTAx + bTh)

x € R4
= Critical point: gradient = zero
ATAx = A'b

= “System of normal equations”



SVD

Problem with normal equations:

= Condition number for normal equations
= (condition number of A)?

= Proof
= SVD:A=UD VT
- ATA=VDUTUD VT = VDV
= More stable (for bad problems)
= Use SVD:
« Al A*=VD*UT
("*" = pseudo-inverse, do not invert zero singular values)

= Effect: Pick smallest solution to normal Equations



Connection to Least-Squares Approx.

Equivalent results:
= |east-squares fitting of basis functions to data
same as
= Setting up over-constrained interpolation problem

= Then solve system of normal equations
= Or pseudoinverse

Proof
= Elementary: Compare resulting equations



One more Variant...

Function Approximation [ « 7
= Function given W
- fIQ2R" >R
= Approximate by

d
fr= z A;b;
i=1

= Difference: Continuous function as “data”
= Almost the same solution...



Function Approximation

Objective function:

= Solution
Kk 2 Kk k
;Aibi_f =<Z/1ibi—f:z/1ibi—f>

Ai{bi, £y +{f, f)
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Function Approximation

Critical point (i.e., solution):
<<b1,b1> <bk,b1>) (@) ((f,'bﬂ)
bub) - (bebd) \A) (b

with:

(f,g) = jﬂf(x)g(x)dx, (0 € RD) (unweighted version)

or
(f,g) = jf(x)g(x)a)z(x)dx,(ﬂ c R?) (weighted version)
Q



Galerkin Approximation

Least-squares criterion (here) equivalent to:

residual each basis function
k
Vi€ (L., k3 ) 2bj = f,bi| =0 linear subspace
J=1 origin
. best approx.
e Vviell.., Z/ljbj,bi = (f, b;) vector
= residual

((blrbl> (bkrb1>) </11> ((fl bl))
= : : Pl = :
(by,bg) -+ (b, b)) \ Ak (f, br)



Summary

What we can do so far:

= | east-squares approximation:
= Fit linear combination to data points

= Variants
= Solve linear systems approximately
= Fit functions to functions

= Extensions
= Weights model varying uncertainty
= The multi-dimensional case is similar




Remaining problems

What is missing:

= (Gaussian noise only

— |teratively reweighted least-squares
(M-estimators)

= Errors in x-direction are ignored
— Total least-squares



